首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23762篇
  免费   2015篇
  国内免费   1730篇
  2024年   6篇
  2023年   250篇
  2022年   367篇
  2021年   1151篇
  2020年   883篇
  2019年   1039篇
  2018年   1030篇
  2017年   748篇
  2016年   1069篇
  2015年   1468篇
  2014年   1723篇
  2013年   1890篇
  2012年   2247篇
  2011年   1925篇
  2010年   1168篇
  2009年   1018篇
  2008年   1201篇
  2007年   1063篇
  2006年   921篇
  2005年   809篇
  2004年   693篇
  2003年   628篇
  2002年   544篇
  2001年   480篇
  2000年   416篇
  1999年   400篇
  1998年   251篇
  1997年   262篇
  1996年   253篇
  1995年   243篇
  1994年   220篇
  1993年   136篇
  1992年   206篇
  1991年   145篇
  1990年   130篇
  1989年   109篇
  1988年   73篇
  1987年   94篇
  1986年   56篇
  1985年   56篇
  1984年   43篇
  1983年   30篇
  1982年   30篇
  1981年   19篇
  1980年   8篇
  1979年   6篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
31.
Most plant intracellular immune receptors belong to nucleotide-binding, leucine-rich repeat (NLR) proteins. The recognition between NLRs and their corresponding pathogen effectors often triggers a hypersensitive response (HR) at the pathogen infection sites. The nicotinate N-methyltransferase (NANMT) is responsible for the conversion of nicotinate to trigonelline in plants. However, the role of NANMT in plant defence response is unknown. In this study, we demonstrated that the maize ZmNANMT, but not its close homolog ZmCOMT, an enzyme in the lignin biosynthesis pathway, suppresses the HR mediated by the autoactive NLR protein Rp1-D21 and its N-terminal coiled-coil signalling domain (CCD21). ZmNANMT, but not ZmCOMT, interacts with CCD21, and they form a complex with HCT1806 and CCoAOMT2, two key enzymes in lignin biosynthesis, which can also suppress the autoactive HR mediated by Rp1-D21. ZmNANMT is mainly localized in the cytoplasm and nucleus, and either localization is important for suppressing the HR phenotype. These results lay the foundation for further elucidating the molecular mechanism of NANMTs in plant disease resistance.  相似文献   
32.
Both monoamine oxidase B (MAO-B) and iron accumulation are associated with neurologic diseases including Parkinson’s disease. However, the association of iron with MAO-B activity was poorly understood. Here we took advantage of highly sensitive and specific fluorescence probes to examine the change in MAO-B activity in human dopaminergic neuroblastoma (SH-SY5Y) cells upon iron exposure. Both ferric and ferrous ions could significantly enhance the activity of MAO-B, instead of MAO-A, in SH-SY5Y cells. In addition, iron-induced increase in MAO-B probe fluorescence could be prevented by pargyline and other newly developed MAO-B inhibitors, suggesting that it was MAO-B activity-dependent. These findings may suggest MAO-B is an important sensor in iron-stressed neuronal cells.  相似文献   
33.
34.
35.
36.
37.
Cordycepin, an adenosine analog derived from Cordyceps militaris has been shown to exert anti-tumor activity in many ways. However, the mechanisms by which cordycepin contributes to the anti-tumor still obscure. Here our present work showed that cordycepin inhibits cell growth in NB-4 and U937 cells by inducing apoptosis. Further study showed that cordycepin increases the expression of p53 which promotes the release of cytochrome c from mitochondria to the cytosol. The released cytochrome c can then activate caspase-9 and trigger intrinsic apoptosis. Cordycepin also blocks MAPK pathway by inhibiting the phosphorylation of ERK1/2, and thus sensitizes the apoptosis. In addition, our results showed that cordycepin inhibits the expression of cyclin A2, cyclin E, and CDK2, which leads to the accumulation of cells in S-phase. Moreover, our study showed that cordycepin induces DNA damage and causes degradation of Cdc25A, suggesting that cordycepin-induced S-phase arrest involves activation of Chk2-Cdc25A pathway. In conclusion, cordycepin-induced DNA damage initiates cell cycle arrest and apoptosis which leads to the growth inhibition of NB-4 and U937 cells.  相似文献   
38.
It is well known that the acquisition of chemoresistance is a major obstacle for the effective treatment of human cancers. It is reported that microRNAs (miRNAs) are implicated in chemotherapy resistance of various malignancies. miR-10b was previously proved as an oncogene in multiple malignancies, including esophageal cancer. However, its biological significance in regulating cisplatin (DDP) resistance in esophageal cancer is still elusive. Here, we observed that miR-10b expression was upregulated and peroxisome proliferator-activated receptor-γ (PPARγ) expression was downregulated in esophageal cancer tumor tissues and cells. PPARγ was proved as a functional target of miR-10b. Moreover, suppression of miR-10b enhanced the chemosensitivity of esophageal cancer cells to DDP in vitro and in vivo. In addition, PPARγ-mediated DDP sensitivity was weakened by miR-10b overexpression. Furthermore, miR-10b-activated AKT/mTOR/p70S6K signaling pathway through targeting PPARγ. Inactivation of AKT/mTOR/p70S6K by AKT inhibitor (GSK690693) attenuated miR-10b-induced DDP resistance in esophageal cancer cells. Taken together these observation, miRNA-10b-mediated PPARγ inhibition enhanced DDP resistance by activating the AKT/mTOR/P70S6K signaling in esophageal cancer, suggesting a potential target to improve therapeutic response of patients with esophageal cancer to DDP.  相似文献   
39.
Calcium, as the most widely accepted messenger, plays an important role in plant stress responses through calcium-dependent signaling pathways. The calmodulin-like family genes (CMLs) encode Ca2+ sensors and function in signaling transduction in response to environmental stimuli. However, until now, the function of plant CML proteins, especially soybean CMLs, is largely unknown. Here, we isolated a Glycine soja CML protein GsCML27, with four conserved EF-hands domains, and identified it as a calcium-binding protein through far-UV CD spectroscopy. We further found that expression of GsCML27 was induced by bicarbonate, salt and osmotic stresses. Interestingly, ectopic expression of GsCML27 in Arabidopsis enhanced plant tolerance to bicarbonate stress, but decreased the salt and osmotic tolerance during the seed germination and early growth stages. Furthermore, we found that ectopic expression of GsCML27 decreases salt tolerance through modifying both the cellular ionic (Na+, K+) content and the osmotic stress regulation. GsCML27 ectopic expression also decreased the expression levels of osmotic stress-responsive genes. Moreover, we also showed that GsCML27 localized in the whole cell, including cytoplasm, plasma membrane and nucleus in Arabidopsis protoplasts and onion epidermal cells, and displayed high expression in roots and embryos. Together, these data present evidence that GsCML27 as a Ca2+-binding EF-hand protein plays a role in plant responses to bicarbonate, salt and osmotic stresses.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号